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Abstract—Sea lice infestations represent one of the most
significant challenges in salmon aquaculture, resulting in sub-
stantial economic losses and environmental concerns. While
various treatment options exist, including chemical baths, in-
feed treatments, and mechanical removal, determining optimal
treatment policies remains challenging due to the complex
dynamics of lice populations and treatment interactions. We
present a model-free reinforcement learning approach that learns
optimal treatment policies directly from historical farm data,
circumventing the need to explicitly model complex biologi-
cal processes. Our method considers eight distinct treatment
combinations and demonstrates significantly better performance
than random treatment policies, achieving stable rewards while
maintaining lice levels below regulatory thresholds. This work
represents a significant step toward data-driven decision support
in aquaculture, offering a practical framework for optimizing sea
lice management while balancing treatment costs and efficacy.

I. INTRODUCTION
A. Problem statement

Currently, one-third of the global population depends on
fish as a primary source of protein, with salmon being one
of the most widely farmed species. [5] However, salmon
farms worldwide face significant challenges from infestations
of Lepeophtheirus salmonis, a parasitic lice species that causes
lesions, rendering the fish unsuitable for consumption. Various
treatment methods exist to combat these infestations, but their
effectiveness is uncertain, influenced by environmental factors
such as temperature, location, seasonal variations, and the
treatment method itself.

B. Approach

Lice level management is a complex problem for salmon
farmers that necessitates dynamic decision making in response
to the current lice levels and lice growth rates. For example,
a salmon farmer might experience an influx of lice into their
pens due to a lice outbreak in a neighboring salmon farm
and consequently decide to perform mechanic delousing to
keep the lice levels below the official limit of average adult
female lice count per fish. The nature of lice prevention and
treatment strategy as a series of decisions for an environment
with high levels of uncertainty renders it a suitable problem
for a sequential decision making algorithm. [1]

The ultimate goal of sea lice level management is to
maximize the salmon revenue of the production cycle, which
is dependent on the salmon biomass and the salmon quality

at the time of harvest. The problem is challenging because
sea lice levels evolve probabilistically, and we want to make
sure that we address sea lice levels early enough to avoid a
sea lice outbreak, but late enough so that we avoid unneces-
sarily stressing the salmon (which lowers salmon biomass and
quality).

We present a model-free reinforcement approach to deter-
mine the optimal sequence of treatments that salmon farmers
should apply on a weekly basis to minimize lice outbreaks
given details about their specific farm. Our approach involves
developing a robust policy derived from Q-learning optimiza-
tion that proposes actionable solutions for salmon farmers,
leveraging real-world data sourced from publicly available
datasets. [13]

C. Appropriateness of Approach

The complex dynamics of sea lice populations in salmon
farms present significant modeling challenges that make
model-free approaches particularly attractive. While traditional
approaches attempt to model population growth using partial
differential equations, these models must account for numer-
ous interacting factors including water temperature, salinity,
seasonal fluctuations, and treatment effectiveness, along with
spatial interactions between neighboring farms. [9] This mod-
eling task becomes especially challenging when working with
historical data where treatments were already applied, as it
becomes difficult to disentangle the natural population dynam-
ics from treatment effects. Moreover, the stochastic nature of
treatment outcomes, environmental conditions, and inter-farm
lice movements introduces multiple sources of uncertainty that
are difficult to capture in explicit models. Model-free rein-
forcement learning circumvents these challenges by learning
directly from observed state transitions, eliminating the need
to explicitly model the underlying biological processes while
still capturing their complex interactions through experienced
outcomes.

II. RELATED WORK AND LITERATURE REVIEW

Sea lice management in salmon aquaculture has been exten-
sively studied due to its significant economic and environmen-
tal implications. Furthermore, researchers have applied modern
optimization techniques to different areas of aquaculture, such
as fish farming and harvesting. While Norwegian government
regulations have generated extensive historical data on sea



lice in salmon farms, there remains a significant research
gap in modeling sea lice populations. This gap is particularly
pronounced when attempting to model population dynamics
in the presence of treatments, as treatment effects in historical
data confound the underlying biological processes. [7] We aim
to combine existing techniques with this abundance of data to
model the effects of treatment on fish populations.

A. Optimization in Aquaculture

Recent years have seen increasing application of mathe-
matical optimization techniques to aquaculture management.
Studies have employed various methods including dynamic
programming [10], mixed-integer programming [14], and
stochastic optimization [15] to address challenges in fish
farming. However, these approaches often rely on simplified
models of complex biological systems and may not capture
the full dynamics of sea lice populations. We aim to model
this problem as a Markov Decision Process (MDP), in order
to accurately capture the complex effects of treatments on sea
lice populations.

B. Reinforcement Learning in Agricultural Systems

While reinforcement learning has shown promise in agricul-
tural applications [2], its use in aquaculture has been limited.
Several studies have demonstrated the potential of RL in
livestock management [11], crop disease control [4], and fish
growth trajectory tracking [3], suggesting its applicability to
parasite management in aquaculture. However, little research
has been conducted focusing on optimizing treatment man-
agement for farmers, despite its real-world impact on the
global economy. The success of model-free approaches in
these domains is particularly relevant to our work, as they
can learn optimal policies without requiring explicit models
of complex biological systems.

C. Data-Driven Decision Making in Aquaculture

The emergence of precision aquaculture has led to increased
availability of monitoring data [8], [13]. However, translating
this data into effective treatment decisions remains challeng-
ing. Recent work has begun to explore machine learning
approaches for predicting sea lice abundance [6], but few
studies have addressed the optimization of treatment strategies
based on these predictions.

ITII. PROBLEM FORMULATION
We explicitly define our MDP as follows:

A. State Space Definition

Let state s; at time ¢ be defined as a vector: s; = [l;, w]
where:

1) I, € RT: Current sea lice level (continuous)

2) w; € R: Water temperature (°C)

Therefore, S = R* x R. We define the state space over
one production cycle (one year), so ¢ € [1,52]. Therefore, our
MDP can be described with a finite time horizon. We discretize
the continuous state space of sea lice levels by multiplying

each lice count value by 100 and rounding to the nearest
integer, effectively creating discrete buckets with a resolution
of 0.01 lice per fish. For example, a lice level of 0.235 would
be mapped to state index 23, while 0.239 would map to state
index 24. The same approach was used for discretization of
sea temperature in our Q-learning model without action value
function approximation.

B. Action Space Definition

Let action a; at time ¢ be defined as a treatment combination
vector: a; = [by, ft, m:] where:

o b € {0,1}: Bath treatment
o fr €{0,1}: Feed treatment
o my € {0,1}: Mechanical removal

Each binary element represents whether that specific treatment
is applied (1) or not (0). This yields a total of 7 possible
treatment combinations plus the no-treatment option, giving
us eight possible actions a; € {0,1,...,7} where:

e a; = 0: No treatment [0, 0, 0]

e a; = 1: Bath only [1,0, 0]

e a; = 2: Feed only [0, 1,0]

e a; = 3: Mechanical only [0, 0, 1]

e a; = 4: Bath + Feed [1, 1, 0]

e a; = 5: Bath + Mechanical [1,0,

e a; = 6: Feed + Mechanical [0, 1,

e a; = T: All treatments [1, 1, 1]

1]
1]

In our binary action space experiment, we simplify this to
a; € {0,1} where O represents no treatment and 1 represents
mechanical removal only.

C. Transition Function

The transition probabilities T'(s¢+1 | st, a¢) are empirically
estimated from historical data rather than modeled theoreti-
cally. For each state-action pair (s, a;), we maintain counts
of observed transitions to next states s¢4; in our transition
matrix. These counts are normalized to obtain probabilities:

N(Sta Qg 5t+1)
Hoen o) = & N

where N (s, aq, s¢4+1) represents the number of times state
s¢+1 was observed following state s; and action a; in the
historical data. If no transitions are observed for a state-action
pair (3, N(s¢,at,s") = 0), the system remains in the current
state (Syy1 = St)-

D. Reward Function

The reward function R(s:,a:) is defined as: R(s:, at) =
=1l — B1max(0,1; — 0.5) + 1 max(0,l; — l;41) — Pac(ar)
where:

1) [;: Current lice level at time ¢

2) ly+1: Next observed lice level

3) c(ay): Cost of action a;

4) By, B2: Weight parameters for lice-related penalties and
costs, respectively (experimentally determined)



The reward function consists of four terms that account for
the following:

1) (B1l:: Base penalty proportional to current lice level

2) By max(0,l; — 0.5): Additional heavy penalty for ex-
ceeding threshold of 0.5 lice per fish

3) p1max(0,l; — l;+1): Reward for reducing lice levels

4) Pac(ay): Treatment cost penalty

IV. METHODS AND ALGORITHMS

We explored a variety of algorithms to compute an op-
timal policy, ultimately implementing Q-learning. While we
explored model-based algorithms, we discovered that an ex-
ponential growth PDE transition function did not accurately
represent the data set on which we trained our models. While
the transition function assumes exponential growth of lice,
the dataset demonstrated a more erratic pattern that was not
captured by the proposed transition probabilities via a PDE
T(li41 | st,at) = (1—pa, )€1y, where 1 is the growth rate of
the population and p,, is the efficacy probability of treatment
at. Model-based algorithms learn the transition and reward
models through interaction with the environment. Therefore,
as a result of the challenges of establishing a meaningful
transition representation, we focused our efforts on model-free
reinforcement and simulation methods.

A. Baseline

Our baseline model utilizes a random policy that arbitrarily
picks any action a € A chosen independently from the current
state space. The model serves as a baseline for comparison
with our other methods.

B. Q-learning

We implemented model-free Q-learning, which incremen-
tally estimates the action value function Q(s, a) to evaluate an
optimal policy without explicitly defining the transition and re-
ward functions. Our algorithm uses the following incremental
update rule to estimate the action value function:

Q(s,a) < Q(s,a) + a(r + ymazy Q(s',a’) — Q(s, a))

We performed exploration with e-greedy exploration with
an epsilon value of 0.1. In a particular state s, we chose a
random action with a probability of 10 percent and the action
that optimized the Q-value for that state, argmazy Q(s,a’),
90 percent of the time.

V. RESULTS AND ANALYSIS

Our empirical evaluation demonstrates the effectiveness
of Q-learning for optimizing sea lice treatment strategies in
salmon aquaculture. The agent learns directly from historical
transition data, with state transitions sampled from observed
outcomes rather than using a learned model of the environment
dynamics. We elaborate on the difficulties of constructing a
learned model in the discussion, and choose a model-free
approach.

A. Action Space

In our first experiment, we consider eight possible treat-
ment combinations: no treatment (control), bath treatment
only, feed treatment only, mechanical removal only, bath and
feed combined, bath and mechanical combined, feed and
mechanical combined, and all three treatments combined. This
represents the complete set of available interventions in salmon
aquaculture. For our second experiment, we simplify to a
binary choice between no treatment and mechanical removal,
allowing us to analyze the effectiveness of one treatment
(mechanical intervention) in isolation.

B. Performance Comparison

Figures 1 and 2 show that our Q-learning approach sig-
nificantly outperforms a random treatment policy across both
experiments. In the eight-action scenario (Figure 1), the Q-
learning agent demonstrates remarkable stability, achieving
a mean reward of —969.07 + 940.66 with relatively small
variance. In contrast, the random policy performs significantly
worse with a mean reward of —52025.92 + 3428.02 with
high variance. Both experimental results are averaged over 3
simulations, for 10 epochs each.

When restricted to binary actions (Figure 2), we observe that
while Q-learning still outperforms the random policy, the per-
formance advantage is less pronounced. Q-learning achieves
a mean reward of —11823.98 & 5315.97, while the random
policy achieves a mean reward of —32529.62 + 9701.13. The
binary action space leads to more variable performance in both
policies, suggesting that the reduced flexibility in treatment
options may limit the agent’s ability to effectively manage sea
lice levels.

C. Learning Stability and Convergence

The eight-action implementation shows superior stability
and convergence characteristics compared to the binary ver-
sion. With eight actions, the Q-learning agent quickly con-
verges to a stable policy and maintains consistent performance
across all epochs, as evidenced by the narrow confidence
bands. This suggests that having access to a fuller range of
treatment combinations allows the agent to learn more robust
and reliable policies.

In contrast, the binary action space, while simpler, results
in more volatile performance. This indicates that the restricted
action space may be insufficient for handling the complex dy-
namics of sea lice populations, despite its apparent simplicity.
The full treatment combination space not only offers better
performance but also demonstrates more reliable learning
characteristics.

VI. DISCUSSION

As part of our exploration, we encountered several limita-
tions to our dataset and approach that impacted our results.
Notably, variations in the data, difficulties in defining a mean-
ingful reward function, and challenges to exploring the entire
state space with the given dataset proved challenges that we
sought to overcome. In this section, we will discuss each



Q-Learning vs Random Policy: Total Rewards Over Time
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Fig. 1. Performance comparison between Q-learning and random policy
with eight treatment combinations. The Q-learning agent demonstrates stable,
superior performance with minimal variance.
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Fig. 2. Performance comparison between Q-learning and random policy with
binary actions (no treatment vs. mechanical). While Q-learning outperforms
random policy, both show increased variance compared to the eight-action
scenario.

of these challenges in more detail, as well as provide some
insights as to what a further exploration of the problem could
look like.

A. Limitations in the data

For this project, we used public data provided by Lusedata
to optimize sea lice management in Norwegian salmon farms.
The dataset is extensive over all farms in Norway due to
Norwegian regulations that mandate all salmon farmers to
report sea lice levels per pen on a weekly basis. While this
offered a valuable dataset to compute an optimal policy for
sea lice management, the dataset offered some challenges as
well.

Based on past literature as well as the nature of sea lice as
an invasive species with exponential growth, we assumed that
the sea lice levels would follow an exponential growth pattern;
however, the dataset demonstrated a rather erratic pattern of
sea lice levels across time, which was a challenge when
simulating lice growth when computing an optimal policy with

Q-learning. We have established several factors that might
have contributed to this pattern.

First, sea lice levels in a particular farm are heavily affected
by sea lice outbreaks in neighboring farms. Our state space
does not account for the sea lice levels of neighboring farms,
which is a limiting factor in our model. An extension to this
project could involve mapping out the relative locations of
different salmon farms and including the sea lice levels of
neighboring salmon farms in the state space.

Second, sea lice monitoring methods vary drastically across
farms. While some farms use manual counting procedures,
other farms use more sophisticated equipment like lasers that
use computer vision to detect sea lice on salmon and then
apply artificial intelligence models to estimate sea lice levels in
the pen. The variation in montioring methods and subsequent
accuracy of reported sea lice levels will naturally affect the
expected growth of sea lice as sea lice growth follows an
exponential model.

Third, our model only considered a subset of all the avail-
able sea lice management methods due to data availability.
Thus, our model did not take into account crucial factors such
as the presence of electric fences and sea lice skirts in the
pens, which will affect the influx of lice into pens as well as
continued growth of the current sea lice population.

B. Limitations of the reward function

An ideal reward function would reflect the revenue of
the salmon farm at the end of a production cycle. The
revenue is dependent on the salmon biomass, salmon fish
health, adherence to regulations on the maximum number of
treatments. The types and number of treatments function as
a proxy for these variables, as treatments significantly impact
salmon biomass and fish health. Notably, total mortality could
be reduced by 21 percent if avoiding all lice treatments,
demonstrating the impact of lice treatments on salmon biomass
in a production cycle [12]. Unfortunately, the dataset available
for this project only provided data information on sea lice
levels, treatments procedures, and treatment cost. Therefore,
we had to make design choices for how we wanted to define
a meaningful reward function to capture the expected revenue
of salmon farmers as a function of treatments. Upon careful
consideration, we define the reward function R(sg, a;) as
R(St, Clt) = —B1lt—ﬁ1 max(O, lt_0-5)+61 max((), lt—lt+1)—
Bac(ay) where ¢(ay) is the cost function for chosen treatments,
max(0,l; — l;41) is the expected change in lice levels, and
b1, B2 are weighting parameters. As expected, the choice of
costs and weighting parameters greatly affected the resultant
policy. In order for the policy to be meaningful, we would need
additional data on the actual impact of treatment costs and
lice levels on the expected revenue of a production cycle. As
such, further exploration would likely necessitate partnering
with specific farms to access the financials associated with
sea lice management, as we estimated these costs ourselves.



C. Limitations in the state space exploration

Any problem in which a continues state space is discretized
inherently implies limitations to the state representation. Al-
though empirically this discretization helped performance,
likely because similar states would imply similar preferred
treatment options, in a further exploration of this problem
working in the continuous state space may prove advanta-
geous. Furthermore, additional factors that we did not have
access to in the data, such as neighboring farm lice levels
and more specific water conditions, may have proved useful
in predicting lice levels and also treatment effectiveness. In
practice, greater data collection may result in more successful
policies.

VII. CONCLUSION

This paper demonstrates the effectiveness of model-free
Q-learning for optimizing sea lice treatment strategies in
salmon aquaculture. Our approach learns effective policies di-
rectly from historical treatment data without requiring explicit
modeling of the complex biological dynamics governing sea
lice populations. This is particularly advantageous given the
challenges of modeling population growth in datasets where
treatments have already been applied. Furthermore, the exper-
imental results show that our Q-learning agent significantly
outperforms random treatment policies across both eight-
action and binary action spaces. Notably, the agent achieves
more stable and superior performance when given access
to the full range of treatment combinations, suggesting that
flexibility in treatment options is valuable for effective sea
lice management.

Several promising directions exist for future work. First,
incorporating environmental variables such as location and
salinity could provide additional context for treatment deci-
sions. Second, extending the model to account for spatial in-
teractions between neighboring farms could improve regional-
level management strategies. Finally, investigating the impact
of different discretization schemes for the state space could
potentially improve the agent’s ability to make fine-grained
treatment decisions.

The success of our model-free approach indicates that
complex biological interactions between population and treat-
ments can be effectively managed without explicit modeling
of their underlying dynamics, opening possibilities for similar
applications in other aquaculture and agricultural settings.

VIII. CONTRIBUTIONS

In this project, Will focused on simulating lice levels
in a model-free approach. This simulation allows us to
train and evaluate our policies. Olivia worked on imple-
menting the Q-learning model with a binary action space
A = {No treatment, Mechanical only}. The initial Q-learning
model with a binary action space allowed us to explore and es-
tablish an appropriate reward function. She also implemented
and explored the performance of Q-learning with value func-
tion approximation. Learning that the Q-learning performed
worse with value function approximation, we shifted our focus

to our exact Q-learning. Ali expanded this Q-learning model to
include the complete action space with eight possible treatment
combinations, and worked on evaluating the Q-learning agent
against a random policy. These experiments allowed us to
better understand which action spaces, reward models, and
hyperparameters increased the performance of the Q-learning
agent. All three members contributed to various components
of the final paper, and each spent an extra 30 hours making
sure the paper is conference-ready.
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