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Abstract—Sea lice (Lepeophtheirus salmonis) infestations are
a persistent threat to salmon aquaculture, contributing to fish
mortality, economic loss, and environmental harm. While treat-
ments such as mechanical removal and chemical baths can
reduce parasite load, they are costly, stressful to fish, and
risk fostering resistance. Selecting optimal treatment strategies
remains challenging due to uncertain infestation dynamics and
noisy monitoring data.

In this work, we develop a model-based reinforcement learning
framework using Partially Observable Markov Decision Pro-
cesses (POMDPs) to optimize sea lice treatment policies at the pen
level. We evaluate three dynamic programming solvers—Value
Iteration, QMDP, and SARSOP—against heuristic and random
baselines. Simulations across a range of cost-weight trade-offs
demonstrate that POMDP-based policies significantly reduce lice
levels while maintaining economic efficiency. This study high-
lights the potential of data-driven decision support for precision
aquaculture, offering scalable strategies tailored to site-specific
dynamics using real-world data.

I. INTRODUCTION

A. Background on Sea Lice

Sea lice, parasitic copepods such as Lepeophtheirus salmo-
nis, are a significant challenge in aquaculture, particularly
salmon farming. These ectoparasites are persistent ectoparasite
copepods that attach to Atlantic salmon worldwide and cause
lesions, leading to reduced fish welfare and harvest biomass.
The life cycle of sea lice includes planktonic and parasitic
stages, with population growth often exhibiting exponential
dynamics. Effective management of sea lice is critical to
maintaining fish health and ensuring the sustainability of
salmon farming.

The impacts of sea lice on salmon aquaculture have been
extensively studied due to their significant economic and
environmental implications [2]. A study of sea lice infestations
in all Norwegian salmon farms over 84 months suggested that
an average infestation over a typical central region spring-
release cycle generates damages of USD 0.46 per kg of
harvested biomass, equivalent to 9% of farm revenues [1].
These losses are driven mainly by treatment costs, reduced
fish growth, and reduced food conversion efficacy [1]. Beyond
economics, sea lice pose ecological risks by transferring from
farmed to wild fish populations, threatening biodiversity. These
impacts demonstrate the need for robust, cost-effective man-
agement strategies that balance fish welfare with operational
constraints.

B. Problem Significance

Managing sea lice is inherently complex due to uncertainty
in monitoring and the high costs of interventions. Lice counts
are typically obtained by computer vision methods or manual
sampling, which introduces observation noise, making it dif-
ficult to accurately assess infestation levels. Traditional mon-
itoring methods rely on manual inspection of small samples,
often yielding inaccurate estimates.

Farmers operate under constraints set by the Norwegian
government that regulate the max average adult female sea lice
count per fish allowed without mandated treatment regiments.
Mechanical delousing offers a key treatment method, but is
costly, has variable efficacy, and harms fish welfare. The need
to balance the benefits of keeping sea lice levels below with
the economic and ecological impacts of treatment methods
underscore the need for optimizing treatment timing and
frequency.

The emergence of precision aquaculture has led to increased
availability of monitoring data [15], [21]. However, translat-
ing these data into effective treatment decisions remains a
challenge. Consequently, despite advances in AI and com-
puter vision for lice monitoring, no analytical decision-making
frameworks have been developed for treatment optimization.
As a result, Norwegian salmon farmers continue to rely
heavily on intuition and observational insights, often relying
on heuristic approaches such as threshold-based treatments.
Although simple, these methods fail to account for observation
uncertainty or the stochastic nature of lice population dynam-
ics, leading to suboptimal decision that either overtreat (in-
creasing costs) or undertreat (allowing infestations to escalate).
Lice level management is, consequently, a complex problem
that necessitates dynamic decision-making in response to the
current lice levels and lice growth rates.

C. Research Gap

Partially Observable Markov Decision Processes (POMDPs)
provide a powerful mathematical framework for sequential
decision making under uncertainty, combining stochastic tran-
sitions, noisy observations, and a reward structure to optimize
actions. While POMDPs have been applied to invasive species
management [22], their potential to optimize sea lice treatment
strategies remains unexplored. Nonetheless, the nature of lice
prevention and treatment strategy as a series of decisions for
an environment with high levels of uncertainty renders it a
suitable application for POMDPs. [3]



Despite their potential, POMDPs have not been applied to
sea lice management. Existing studies often rely on math-
ematical models and Markov Decision Processes (MDPs),
which assume perfect state knowledge despite the observa-
tional noise inherent to sea lice monitoring. Furthermore, while
exponential growth is a hallmark of sea lice populations,
few models explore log-normal state spaces to capture this
dynamic accurately. This research addresses these gaps by
developing a POMDP-based approach that incorporates ob-
servation uncertainty, exponential growth dynamics, and data-
driven parameterization.

D. Research objectives

The primary objective is to develop a POMDP framework
for sea lice management, modeling sea lice levels as states,
treatment decisions as actions, and noisy counts as observa-
tions. We implement discrete POMDPs for policy computa-
tions and continuous POMDPs for simulations.

A secondary objective is to determine the optimal treatment
policies using POMDP solvers and compare their performance
through simulations. We explore three dynamic programming
algorithms to determine the optimal treatment strategy for
the given POMDP, including Value Iteration with a fully
observable state space, Successive Approximations of the
Reachable Space under Optimal Policies (SARSOP), and
Q-value Markov Decision Processes (QMDP). We compare
these policies against a heuristic baseline, assessing trade-
offs between treatment costs and lice levels across a range
of economic priorities.

II. LITERATURE REVIEW

A. Prior Modeling Efforts

Recent years have seen increasing application of mathe-
matical optimization techniques to aquaculture management.
Studies have employed various methods including dynamic
programming [16], mixed-integer programming [23], additive
models [20], and stochastic optimization [24] to address chal-
lenges in fish farming. However, these approaches often rely
on simplified models of complex biological systems that may
not capture the full dynamics of sea lice populations.

Recent work has begun to explore machine learning ap-
proaches for predicting sea lice abundance [13] [7], state-space
modeling for intersite spread of sea lice [8], [6], and simple
models to inform area management of sea lice parasitism [14].
However, few studies have addressed optimization of treatment
strategies based on these predictions.

We can look to adjacent fields like agricultural systems to
appreciate the utility of reinforcement learning to inform con-
trol methods in farming. Several studies have demonstrated the
potential of reinforcement learning in livestock management
[19], crop disease control [9], and invasive species manage-
ment [22], suggesting its applicability to parasite management
in aquaculture.

B. Overview of Decision Making Under Uncertainty

An MDP provides a mathematical framework for sequential
decision making under uncertainty, where all the uncertainty
arises from outcomes that are partially random and partially
under control of a decision maker. A POMDP is a more
general decision making problem in which the agent is not
sure what state they are in. In POMDPs, exact observations
of the state are replaced with a probabilistic relationship with
the state [10]. POMDPs have important applications across
domains, including aircraft collision avoidance, automated
driving, breast cancer screening, financial consumption and
portfolio allocation, and distributed wildfire surveillance [10].
The success of POMDPs lies in their ability to handle partial
observability and optimize long-term rewards, which enable
them to model complex systems with uncertain state and
transition dynamics more realistically.

POMDPs have been applied to invasive species management
[22], where the population size is rarely precisely known. By
incorporating uncertainty in the population estimate, POMDPs
led to more realistic and effective management policies. De-
spite a known high noise in sea lice population measurements,
POMDP models for sea lice management have not been widely
explored.

C. Policy Optimization Methods

Solving POMDPs remains a computations challenge, espe-
cially in continuous and high-dimensional belief spaces. Sev-
eral algorithmic approaches have been developed to generate
optimal policies, each with distinct assumptions and tradeoffs.

Traditional value iteration for POMDPs operates on dis-
cretized representations of belief states, computing the exact
value function through dynamic programming updates. When
applied to the underlying MDP, it yields exact policies for
fully observable problems. While value iteration guarantees
convergence to the optimal value function through repeated
updates, it does not handle partial observability directly [10].
Furthermore, value iteration does not scale well to larger or
continuous state spaces.

In 1995, Littman et al. addressed the scaling issues asso-
ciated with traditional value iteration by introducing a novel
hybrid approach that uses the underlying MDP optimal value
function as an aid in POMDP solution, but still appreciates
partial observability at the decision step while assuming full
observability after that step [12]. While Littman et al. were
able to obtain high quality policies for a class of POMDP’s
with nearly 100 states, the authors note that other techniques
will be needed to handle the thousands of states needed to
address realistic problems [12].

SARSOP seeks to overcome the curse of dimensionality by
exploiting the notion of optimally reachable belief spaces to
improve computation efficiency. It handles partial observability
at every step but offers efficient point-based POMDP plan-
ning by approximating optimally reachable belief spaces [11].
While SARSOP produces near-optimal policies with signifi-
cant computational savings over full belief space enumeration,



it applies only to discrete state, action, and observation spaces,
necessitiating discretization of continuous spaces.

III. PROBLEM FORMULATION

We model the process as a POMDP, enabling the modeling
of uncertainty in both system dynamics and observations. The
POMDP model consists of a one-dimensional state space that
represents the level of sea lice in a log space. We utilized log
space to linearize the transition dynamics given the exponential
nature of the growth of sea lice populations.

We discretize the state space to accommodate the discrete
nature of the SARSOP and QMDP solvers; however, we
utilize a continuous state space during simulations. We will
refer to these two POMDP models as our ”Discrete POMDP”
and ”Continuous POMDP” going forward.

We define the POMDP as a tuple (S,A, T ,R,O, γ), where
• S: The state space, representing the level of the sea lice

in log space.
• A: The action space, representing treatment decisions.
• T (s′|s, a): The transition model, giving the probability of

transitioning to state s′ after taking action a in state s.
• R(s, a): The reward function, representing the expected

reward received when executing action a from state s.
• O(o|a, s′): The observation function, representing the

probability of observing o, given that we took action a
and transitioned to state s′.

• γ ∈ [0, 1): The discount factor.

A. State Space Definition

Let state st at time t be defined as the current sea lice
level in log space at time t: st = log(Nt), where Nt is the
absolute sea lice level. We constrain the sea lice level range
from 1e− 3 to 10, which reflects the most common range of
sea lice values observed in historical data from 2014 to 2025
under the assumption that the complete absence of sea lice is
impossible. Since log is a monotonically increasing function,
we have a state space ranging from log(1− 3) to log(10).

Due to the discrete nature of the solvers, we discretize the
state space of sea lice levels when solving policies. We do
so by rounding each log sea lice level to two decimal places,
effectively creating discrete buckets with a resolution of 0.01
log sea lice per fish. We conversely utilize a continuous state
space during simulations.

B. Action Space Definition

Let action at ∈ {0, 1} at time t be defined as a binary
element that represents whether mechanical treatment was
applied (at = 1) or not (at = 0) in week t.

C. Transition Function

We assume a growth function

ℓt+1 =

{
er ∗ ℓt, without treatment
(1− ρ) ∗ er ∗ ℓt, with treatment

(1)

where

• ℓt is the absolute sea lice level at time t
• ρ is the treatment efficacy of mechanical treatment,

representing the percentage of average adult female lice
per fish removed during mechanical treatment,

• r is the growth rate of lice in a week, and
• σ2 is the variance capturing noise.
We can linearize the growth function by applying the log

transformation on both sides

log(ℓt+1) =

{
r + log(ℓt), without treatment
log(1− ρ) + r + log(ℓt), with treatment

(2)
Since we model sea lice level in log space and st = log(ℓt),

we can use this growth function to determine the expected next
level of sea lice in log space µst+1 = µ(st+1 | st, at).

µst+1
=

{
r + st, without treatment(at = 0)

log(1− ρ) + r + st, with treatment(at = 1)
(3)

1) Discrete POMDP: When solving the problem in dis-
cretized state space, we utilize the sparse categorical Spar-
seCat distribution from the POMDPs.jl package that takes
a list of outcomes and a list of associated probabilities as
arguments [17]. We then draw the next state from the following
distribution:

T (st+1 | st, at) = SparseCat(st+1,i, P (st+1,i|st, at)), (4)

where st+1,i are discretized values derived from a Normal
distribution N (µst+1 , σ

2), with variance σ2. We sample five
points around the mean µ(st+1 | st, at), so the transition
function becomes a categorical distribution with five values
in the following states [µst+1

− 2σ, µst+1
− σ, µst+1

, µst+1
+

σ, µst+1
+ 2σ]. Each observation ot,i is interpolated to the

closest state space with one decimal place precision, and
clamped to be within the range [log(1e−3), log(10)] to ensure
numerical stability.

2) Continuous POMDP: When we simulate the problem
in continuous state space, we sample randomly from the
normal distribution N (st+1, σ

2), with variance σ2, using the
ImplicitDistribution function in POMDPs.jl [17].

D. Reward Function

Our goal is to optimize both the cost of the treatment and
the level of sea lice, so we consider a convex combination of
these two variables in the reward function. The reward function
R(st, at) is defined as:

R(st, at) =

{
−λℓt, without treatment(at = 0)

−λℓt − (1− λ) ∗ c, with treatment(at = 1)
(5)

where:
1) ℓt is the raw sea lice level at time step t in episode i

with ℓt = est



2) c: The treatment cost of mechanical lice removal
3) λ: Weight parameter indicating the relative importance

of optimizing for sea lice level and treatment cost.

E. Observation Function

We define the observation function as a Gaussian distribu-
tion centered at the true sea lice level.

1) Discretized POMDP: When solving the problem in
discretized state space, the observation o ∈ O is drawn from
the following distribution:

O(ot | st, at) = SparseCat(ot,i, P (ot,i|st)), (6)

where ot,i are discretized values derived from a normal
distribution N(st, σ

2), with variance σ2. We sample five points
[st − 2σ, st − σ, st, st + σ, st + 2σ]. Like in the transition
function, each observation ot,i is interpolated to the closest
state space with one decimal place precision, and clamped to
be within the range [log(1e− 3), log(10)] to ensure numerical
stability.

2) Continuous POMDP: When simulating the problem
in continuous state space, we sample randomly from the
normal distribution N(st, σ

2) using the ImplicitDistribution
in POMDPs.jl [17].

F. Discount factor

We utilize a discount factor of γ = 0.95 for all experiments.

IV. METHODS AND ALGORITHMS

To explore trade-offs between computation costs and per-
formance, we explored three different policy solvers: value
iteration with full observability, QMDP, and SARSOP. We
compared these algorithms against a heuristic policy with a
threshold-based stochastic treatment rule.

A. Heuristic Policy

We implemented a heuristic policy that takes in two param-
eters: a sea lice threshold lthres and a belief threshold Pthres.
The agent applies treatment if the cumulative probability of
the belief states where the sea lice level is above the sea lice
threshold is above the belief threshold. Otherwise, the policy
arbitrarily picks any action a ∈ A. The heuristic model utilizes
a discrete updater.

B. Value Iteration

We next implemented value iteration with full observability.
Value iteration is an exact solution method that updates the
value function directly. It begins with any bounded value
function U , which is improved by applying the Bellman
update:

Uk+1(st) = maxat
(R(st, at)+γ

∑
st+1

T (st+1|st, at)Uk(st+1)),

(7)
where
• Uk(st) is the value of state st at iteration k
• R(st, at) is the expected reward received when executing

action at from state st.

In our implementation, we transformed our POMDP into an
MDP using the UnderlyingMDP function in the POMDP-
Tools.jl package [18]. We solved the MDP using a vanilla
ValueIterationSolver in the DiscreteValueIteration.jl pack-
age with a max iterations set to 30 and a default Bellman
Residual of 1e− 3 [5].

C. QMDP

The QMDP algorithm scales better by using the optimal
Q-values of the underlying MDP to create the QMDP value
function for a POMDP:

QMDP (b) = maxaQ(s, a)b(s) (8)

where Q(s, a) is the action value function representing the
expected return when starting in state s, taking action a, and
then continuing with the greedy policy with respect to Q [10]:

Q(s, a) = R(s, a) + γ
∑
s′

T (s′|s, a)U(s′) (9)

We solved the POMDP using the QMDPSolver function in
POMDPs.jl using the default max iterations parameter of 30
[17].

D. SARSOP

We next implemented SARSOP, which is a point-based
POMDP algorithm that exploits the notion of optimally reach-
able belief spaces to improve high computational complexity
often associated with POMDPs [11].

The algorithm considers R(b0), the subset of belief points
reachable from a given initial point b0 ∈ B, where B is the full
belief space, under optimal sequences of actions. The optimal
sequences of actions consitute the POMDP solution itself,
so SARSOP compute successive approximations of R∗(b0)
through heuristic exploration to sample R(b0) [11].

We implemented SARSOP using the the SARSOPSolver
function in POMDPs.jl with the default max time parameter
of 10 seconds [17].

E. Belief Updates

There are various algorithms for updating our belief based
on the observation and action taken by the agent. When solving
the policies, the state space is discrete, allowing us to perform
exact belief updates with the following equation [10].

b′(st+1) = O(o|at, st+1)
∑
st

T (st+1|st, at)b(st+1) (10)

To handle belief updates in continuous state spaces during
simulations, we utilize the Extended Kalman Filter (EKF)
and Unscented Kalman Filter (UKF), which extend the tra-
ditional Kalman filter, which provides an exact update under
the assumption that T and O are linear The belief state in
our POMDP is represented as a Gaussian distribution over
sea lice levels, parametrized by a mean µst and variance
σ2
st . The EKF approximates non-linear state transitions and

observation functions using first-order Taylor expansions. The



EKF extends the standard Kalman filter to problems whose
dynamics are nonlinear with Gaussian noise with the following
equations [10]:

T (st+1|st,at) = N(st+1|fT (st, at),Σst) (11)

O(ot|st+1,at) = N(ot|fO(st+1),Σot), (12)

where fT (st, at) and fO(st+1) are differentiable func-
tions [10].

Conversely, UKF employs a deterministic sampling ap-
proach to campute the non-linear effects more accurately.
The UKF is preferred for log-normal-space models where
exponential growth introduces non-linearities.

The choice of EKF or UKF depends on the trade-off
between computational cost and accuracy, with UKF offering
improved performance for log-normal dynamics at a higher
computation expense.

We implemented both the EKF and UKF utilizing the
runKalmanFilter function in the GaussianFilters.jl package
with parametric process and observation noise [4].

F. Simulation Setup

For all POMDP models, we utilized the following set of
parameters:

Parameter Value

Growth rate (r) 1.26
Treatment effectiveness (ρ) 0.7
Treatment cost (Ctreatment) 10
Discount factor (γ) 0.95
Transition noise (σ2) 0.04
Observation noise (σ2) 0.04
Log sea lice range [log(1e− 3), log(10)]
Initial log sea lice range [log(1e− 3), log(1)]
Heuristic belief threshold (Pthres) 0.5
Heuristic sea lice threshold (lthres) log(5)
Reward function weight (λ) [0, 1] in steps of 0.05

TABLE I: Model and simulation parameters used in all exper-
iments.

We ran simulations of the generated policies using the
RolloutSimulator function in the POMDPs.jl package with
1000 episodes and 52 steps per episode [17].

G. Metrics

To evaluate the performance of different policy optimiza-
tion strategies, we key performance metrics: average reward,
average treatment cost, and average sea lice level per week.

Given a configuration with E episodes and T time steps
per episode, we caculate the following metrics over the total
simulation horizon of E × T steps:

We calculate the average reward per week as follows:

R̄ =
1

E × T

E∑
i=1

T∑
t=1

ri,t (13)

C̄ =
1

E × T

E∑
i=1

T∑
t=1

ai,t × Ctreatment (14)

L̄ =
1

E × T

E∑
i=1

T∑
t=1

ℓi,t, (15)

where
• ri,t is the reward received at time step t in episode i
• ai,t is the action taken at time step t in episode i, equal

to 1 if treatment is applied, 0 otherwise
• Ctreatment is the fixed cost of applying treatment
• ℓi,t is the raw sea lice level at time step t in episode i

with ℓi,t = esi,t

V. RESULTS AND ANALYSIS

This study evaluated the performance of different policies
for managing sea lice populations in aquaculture. We looked
at three algorithms: VI, SARSOP, and QMDP, and compared
their generated policies against random and heuristic policies.
We conducted simulations to assess policy effectiveness, and
visualized the trade-offs between treatment costs and sea lice
levels. Below, we present the key findings from our simulations
and sensitivity studies.

Sea lice management offers a multiobjective optimization
problem as salmon farmers need to optimize for both popula-
tion management and cost-effectiveness. To analyze the trade-
off between average treatment cost (MNOK/year) and average
sea lice levels, we simulated a range of lambda values from 0
to 10 at intervals of 0.05. The lambda value decides the relative
weighting of sea lice levels and treatment costs in the reward
function (Equation 5). Low lambda values prioritize keeping
sea lice levels low whereas high lambda values prioritize cost-
effective treatment strategies.

A. Decision-making patterns

To compare the policies generated by value iteration,
QMDP, and SARSOP, we analyze the treatment decisions
across the range of lambda values and sea lice levels. Figure 1
highlights the probability of treatment for the five policies.
As expected, the random policy is uniformly random across
all lambdas and sea lice levels, whereas the heuristic policy
always treats if the sea lice level is above 5 average adult
female lice per fish with stochasticity under that level. Policies
generated by VI, QMDP, and SARSOP all reflect a similar
pattern of treating at lower sea lice levels for higher lambda
values.

Looking at Figure 1, we see that when lambda values are
very high or very low, the treatment choice is uniform across
the sea lice level for VI, QMDP, and SARSOP. At λ = 0, we
never treat, and at λ = 1, we always treat no matter the sea lice
level. The sea lice level influences treatment decisions with a
lambda in the approximate range of λ ∈ [0.6, 0.9]. To consider
both sea lice range and treatment costs, this range for the
lambda value to seems to be optimal to explore for generating
an optimal policy. This is to be expected as a lambda value in
this range considers both objectives with a focus on keeping
sea lice level low. Furthermore, we observe that the treatment
decision heatmaps are very similar for policies found via VI,



QMDP, and SARSOP, with the treatment decision being more
sensitive to the lambda parameter than the solver algorithm
itself.

B. Policy Performance: Cost, Sea Lice Levels, and Rewards

By looking at the decision heatmaps in Figure 1, we saw that
determining an optimal lambda value is critical to establishing
a balanced policy. In this section, we will analyze the policy
performance on simulations across a range of lambda values.

Figure 2 shows the average rewards across λ values for
five different policies. Higher rewards are desired, representing
lower penalties for sea lice level and treatment costs. We can
see that the policies generated using VI, QMDP, and SARSOP
all outperform both the random and heuristic policies across all
lambda values. We note that VI, QMDP, and SARSOP achieve
the highest average rewards at the extremes of the range of
lambda values; however, this is a result of uniform treatment
decisions across sea lice levels. As such, as mentioned in the
previous section, we are interested in the relative performance
in the lambda range of λ ∈ [0.6, 0.9]. Within this range,
we see that value iteration with full observability performs
mildly better than QMDP and SARSOP at lambda ranges of
λ ∈ [0.6, 0.85] but worse at λ ∈ [0.85, 1]; however, these
performance differences are minimal and within the confidence
intervals, keeping us from making conclusive statements on
any performance differences.

We can further break down the analysis of the differential
rewards by looking at the subcomponents of sea lice levels and
treatment costs. Figure 3 and Figure 4 show the average sea
lice level and treatment cost over a range of lambda values for
all policies. For the heuristic policy, average treatment costs
ranged from 8 to 9 MNOK/year, with sea lice levels between
6.5 and 8 adult female lice per fish across lambda values.
Conversely, the random policy resulted in lower treatment
costs centered at around 5 MNOK / year at the cost of higher
average sea lice levels between 8 and 9 average adult female
lice per fish. In the lambda range of λ ∈ [0.6, 0.9], the policies
generated via VI, QMDP, and SARSOP led to lower average
sea lice levels and treatment costs.

Figures 5a, 5b, and 5c showcase the Pareto frontier
for the simulation performances of the policies generated by
VI, QMDP, and SARSOP across lambda values. We want to
minimize both average sea lice level and average treatment
cost, rendering the optimal value at the lower left corner of
the plot. Notably, all algorithms lead to similar Pareto curves.
SARSOP has more spread in the average sea lice level at
high lambda values, likely due to the observation uncertainty
inherent to the SARSOP algorithm. Furthermore, the optimal
values are achieved with a higher lambda value for VI, whereas
points at the Pareto optimum for the QMDP and SARSOP
plots are achieved at lower lambda values of around 0.7.

Figure 5 shows the Pareto frontier for all VI, QMDP, and
SARSOP across lambda values. Here, we can see that there
are marginal differences in the Pareto curves for the different
algorithms.

(a) Random Policy

(b) Heuristic policy

(c) VI With Full Observability

(d) QMDP

(e) SARSOP

Fig. 1: Treatment decision heatmaps across λ and sea lice
levels for three POMDP solvers. Each pixel indicates whether
treatment is recommended (blue) or not (red).



Fig. 2: Comparison of average rewards across λ values for five
treatment policies. Shaded regions represent variability (e.g.,
95% confidence intervals) across simulation episodes. Higher
rewards are preferred, indicating better performance.

Fig. 3: Comparison of average sea lice levels across λ values
for five treatment policies. Shaded regions represent variability
(e.g., 95% confidence intervals) across simulation episodes.
Lower lice levels are preferred, indicating better performance.

C. Optimized Policies

To compare the effectiveness of the policies, we compare the
average levels of sea lice and the treatment costs achieved over
the simulation period of 52 weeks for a chosen lambda of λ =
0.6. Figure 7 shows that the random and heuristic policies lead
to the highest increase in sea lice levels in the first couple of
weeks before leveling out at the 10-week mark. Comparatively,
the policies generated via VI, QMDP, and SARSOP lead to
a slower growth increase in sea lice levels. The average sea
lice level continues to increase monotonically over the entire
time period but slowing down as time passes. Notably, the
SARSOP policy outperforms both the VI and QMDP policies
in both growth rate and a lower plateau of an average of 8

Fig. 4: Comparison of average treatment cost across λ values
for five treatment policies. Shaded regions represent variability
(e.g., 95% confidence intervals) across simulation episodes.
Lower treatment costs are preferred, indicating better perfor-
mance.

adult female lice per fish. Conversely, VI and QMDP leads
to very similar trajectory of sea lice levels over time, leveling
out at around 9.5 average adult female lice per fish. The lower
average levels of sea lice for SARSOP comes at the cost of
higher treatment costs.

Figure 8 showcases the probability of treating per week a
for the different policies. As expected, the random policy has
a probability of treating centered around 50%. Conversely, the
heuristic policy starts with a probability of treating of around
50%. Then, the probability increases linearly over time as
the sea lice levels increase in the first couple of weeks as
seen in figure 7, leveling out at a treatment-intensive level
of around 90% likelihood of treating per week. Conversely,
the VI, QMDP, and SARSOP policies have a high initial
probability of treating, which then decreases sharply in the
first ten weeks before continuing to decrease at a lower rate.
The VI and QMDP policies follow a very similar trajectory
with the lowest probability of treating in all weeks. SARSOP
follows a similar trajectory but with a vertical shift: in every
week, the SARSOP policy is around 20% more likely to treat
than VI- and QMDP-generated policies.

The performance difference of SARSOP in sea lice man-
agement is probably due to a lambda value of λ = 0.6 leading
to a treatment boundary at a lower level of sea lice as observed
in Figure 1. In other words, the SARSOP algorithm leads to
policies that prioritize keeping sea lice levels low more than
the VI and QMDP algorithms. One potential explanation for
this involves the ability of SARSOP to account for partial
observation, leading to better policies for controlling sea lice
levels.



(a) Value Iteration With Full Observability

(b) QMDP

(c) SARSOP

Fig. 5: Policy performance in the treatment cost vs. sea lice
trade-off space. Each point represents one value of λ; color
indicates trade-off intensity.

VI. DISCUSSION

This study demonstrates the feasibility and potential of
using POMDP-based algorithms to optimize sea lice treatment
strategies in aquaculture. By incorporating observation noise,
exponential population dynamics, and cost-sensitive reward
structures, our framework provides a flexible and data-driven
approach to decision-making under uncertainty.

A. Interpretation of Results

Our findings indicate that all three dynamic program-
ming approaches—Value Iteration (VI), QMDP, and SAR-
SOP—significantly outperform heuristic and random policies
in reducing sea lice levels while maintaining reasonable treat-
ment costs. Across all λ values, which determine the relative
weighting of treatment costs and sea lice penalties, the learned
policies consistently resulted in higher cumulative rewards.
Notably, the differences between VI, QMDP, and SARSOP

Fig. 6: Comparison of treatment cost vs sea lice levels
across three POMDP-based policies (VI with full observabil-
ity, QMDP, and SARSOP). Lower left represents the Pareto-
efficient frontier.

Fig. 7: Sea lice level trajectories over time for five policies
at λ = 0.6. Shaded regions represent variability (e.g., 95%
CI) across simulation episodes. Lower levels indicate more
effective treatment strategies.

policies were minimal in the mid-range λ ∈ [0.6, 0.9], suggest-
ing that all three methods are viable for practical deployment
depending on computational constraints and implementation
requirements.

While VI and QMDP achieved slightly lower treatment
frequencies, the SARSOP policy demonstrated improved lice
suppression at the expense of higher treatment intensity. This
outcome aligns with the SARSOP algorithm’s ability to model
partial observability throughout the belief space and suggests
that SARSOP may be more suitable in scenarios where treat-
ment effectiveness is prioritized over cost savings.



Fig. 8: Comparison of treatment probability over time for five
policies at λ = 0.6. Shaded regions indicate variability across
episodes. A lower or decaying treatment rate may signal a
more confident or efficient policy.

B. Implications for Aquaculture Management

The practical significance of these findings lies in the ability
to deploy adaptive treatment strategies based on observed sea
lice levels and prior knowledge of infestation dynamics. Farm-
ers traditionally rely on fixed thresholds or manual heuristics
to initiate treatment, which do not account for observation
noise or latent infestation trends. Our model suggests that
near-optimal policies can be learned and adapted to individual
site dynamics and risk preferences, potentially reducing both
unnecessary treatments and the risk of large-scale infestations.

Further, this framework could support decision support tools
integrated with modern sensor systems, including automated
lice counting via computer vision or environmental DNA
(eDNA) monitoring. The belief-based structure of POMDPs
is well-suited to incorporate uncertainty from such sensor
modalities, offering a principled alternative to reactive rule-
based systems.

C. Limitations

This work is subject to several limitations. First, our simula-
tions rely on a simplified 1D sea lice model with fixed param-
eters. While sufficient to demonstrate proof-of-concept, real-
world sea lice dynamics are influenced by multiple interacting
factors including water temperature, salinity, geographical
location, and inter-farm interactions. Additionally, observation
reliability is assumed constant; in practice, it may vary with
lice monitoring methods, sea temperature, or human error.

Second, the transition function is based on a simple mathe-
matical model of exponential growth of sea lice with a constant
growth rate over time. An analysis of historical data from
all Norwegian salmon farms from 2012-2025 using maximum
likelihood estimation showed that the mean growth rate of sea
lice varies from over time and location, with an average growth
rate of 0.13 in 2015 versus 0.35 in 2024. The assumption of

a constant growth rate limits the ability of the POMDP model
to accurately reflect real-world dynamics, which can lead to
suboptimal treatment policies.

Third, the reward function used in this study is a con-
vex combination of treatment cost and sea lice penalty,
with a scalar λ controlling the trade-off. While useful for
algorithmic benchmarking, this formulation may not fully
reflect stakeholder priorities (e.g., regulatory compliance, long-
term resistance management). Future work should explore
multi-objective optimization frameworks or include regulatory
thresholds as constraints.

Fourth, the action space of the POMDP model is limited
to the binary space of whether or not mechanical treatment
was applied in a certain week. The efficacy of the treatment is
assumed to be constant at ρ = 0.7, representing the percentage
of sea lice removed in a single treatment. However, the true
treatment efficacy varies with lice resistance, farm location,
or treatment methods. The treatment efficacy assumption is
enough for a proof-of-concept, but the treatment efficacy
dynamics need to be validated empirically using historical
data. Furthermore, there are several other treatment methods
available such as water baths, feed treatment, lasers, etc., that
the current model ignores. Adding these treatment methods,
or a combination of them, to the action space will make the
model more accurate at the cost of increased computational
complexity.

D. Future Work

Several extensions would improve the ecological and opera-
tional realism of the model. First, incorporating environmental
variables such as location and salinity could provide additional
context for treatment decisions. Second, extending the model
to account for spatial interactions between neighboring farms
could improve regional-level management strategies. Third,
investigating the impact of different discretization schemes
for the state space could potentially improve the agent’s
ability to make fine-grained treatment decisions. Additionally,
incorporating spatial and time information would allow us
to utilize more granular empirical growth rates inferred from
real data via maximum likelihood estimates by farm and year,
enabling site-specific policy recommendations.

We also envision integrating high-resolution eDNA-based
population monitoring data with real-time dynamic treatment
planning. Recent breakthroughs in eDNA-based detection now
offer precise, near real-time quantification of L. salmonis
DNA, bridging the gap between observed and actual lice
levels (Krolicka et al., 2022). Integrating these high-resolution
population estimates into our dynamic programming frame-
work will significantly enhance treatment accuracy and effi-
ciency. Combining eDNA signals with a probabilistic inference
framework like POMDPs would bridge the gap between true
infestation dynamics and decision-making, offering a powerful
tool for precision aquaculture.



VII. CONCLUSION

This study introduces a POMDP-based framework for op-
timizing sea lice treatment strategies in salmon aquaculture
under uncertainty. By explicitly modeling observation noise,
exponential parasite growth, and treatment costs, we enable
principled decision-making that surpasses traditional heuristic
and threshold-based methods. Through simulation studies, we
show that dynamic programming algorithms—Value Iteration,
QMDP, and SARSOP—consistently achieve higher rewards
and more balanced trade-offs between treatment frequency and
sea lice population suppression. SARSOP, in particular, yields
improved sea lice control by better accounting for partial
observability.

Our findings highlight the practical potential of reinforce-
ment learning and sequential decision-making in aquaculture,
especially when coupled with emerging sensor technologies
such as eDNA-based monitoring. While the model simpli-
fies real-world complexities, including variable environmental
drivers and treatment efficacy, it lays a foundation for future
work incorporating spatial dynamics, empirical parameteriza-
tion, and multi-objective optimization. As aquaculture systems
evolve toward increased automation and data availability, this
framework offers a scalable and adaptive tool for sustainable
sea lice management.
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